分块入门九题
code by Livinfly
原文连接:「分块」数列分块入门1 – 9 by hzwer - 分块 - hzwer.com
开始前,先%%hzwer大佬
主要是贴我的代码,和发现的一些问题,主要思路的讲解hzwer学长已经讲得非常深入浅出了!
关于一些块的大小的取法,数列分块总结——题目总版(hzwer分块九题及其他题目)(分块) - Flash_Hu - 博客园 (cnblogs.com)有提到一些,我这里就全方便起见取$\sqrt{n}$了。
分块入门九题的题目:题库 - LibreOJ (loj.ac)
我在LOJ上提交都有记录,用户名为Livinfly,如有需要也可以去LOJ查看通过记录。
分块1
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong, addTag;
void Add(int l, int r, int c) {
int bl = belong[l], br = belong[r];
if(bl == br) {
for(int i = l; i <= r; i ++)
a[i] += c;
}
else {
for(int i = bl+1; i < br; i ++) {
addTag[i] += c;
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
a[i] += c;
}
for(int i = r; i > 0 && belong[i] == br; i --) {
a[i] += c;
}
}
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize+1;
a.resize(n+1), belong.resize(n+1), addTag.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
}
while(n --) {
int op, l, r, c;
cin >> op >> l >> r >> c;
if(op == 0) {
Add(l, r, c);
}
else {
cout << a[r] + addTag[belong[r]] << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
分块2
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong, addTag;
vector<vector<int>> va;
void Resort(int x) {
va[x].clear();
for(int i = (x-1)*bSize+1; i <= n && belong[i] == x; i ++) {
va[x].push_back(a[i]);
}
sort(all(va[x]));
}
void Add(int l, int r, int c) {
int bl = belong[l], br = belong[r];
if(bl == br) {
for(int i = l; i <= r; i ++) {
a[i] += c;
}
Resort(bl);
}
else {
for(int i = bl+1; i < br; i ++) {
addTag[i] += c;
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
a[i] += c;
}
Resort(bl);
for(int i = r; i > 0 && belong[i] == br; i --) {
a[i] += c;
}
Resort(br);
}
}
int Query(int l, int r, int c) {
int bl = belong[l], br = belong[r];
int ret = 0;
if(bl == br) {
for(int i = l; i <= r; i ++) {
if(a[i]+addTag[bl] < c) {
ret ++;
}
}
}
else {
for(int i = bl+1; i < br; i ++) {
int t = c-addTag[i];
ret += (lower_bound(all(va[i]), t) - va[i].begin());
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
if(a[i]+addTag[bl] < c) {
ret ++;
}
}
for(int i = r; i > 0 && belong[i] == br; i --) {
if(a[i]+addTag[br] < c) {
ret ++;
}
}
}
return ret;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize+1;
a.resize(n+1), va.resize(bNum+1), belong.resize(n+1), addTag.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize+1;
va[belong[i]].push_back(a[i]);
}
for(int i = 1; i <= bNum; i ++)
sort(all(va[i]));
for(int i = 0; i < n; i ++) {
int op, l, r, c;
cin >> op >> l >> r >> c;
if(op == 0) {
Add(l, r, c);
}
else {
cout << Query(l, r, c*c) << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("a2.in", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
分块3
这道题数据稍微弱了点,然后hzwer学长的std也假了,但是还是%%
std用set
的erase
会一次把所有的值删掉,但我们其实只删一个。
考虑用multiset
,注意不要直接erase
,这样也是全部一次删完,要find
出来,删指针,才能删一个!
然后,时间复杂度做法1比假的set做法后面的点每个平均快100ms,multiset的时间更不忍直视((
没有特别想清楚为什么qwq
留坑,如果有人知道的,可以email or qq教教我
做法1,同分块2的自己sort保证有序的性质
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong, addTag;
vector<vector<int>> va;
void Resort(int x) {
va[x].clear();
for(int i = (x-1)*bSize+1; i <= n && belong[i] == x; i ++) {
va[x].push_back(a[i]);
}
sort(all(va[x]));
}
void Add(int l, int r, int c) {
int bl = belong[l], br = belong[r];
if(bl == br) {
for(int i = l; i <= r; i ++) {
a[i] += c;
}
Resort(bl);
}
else {
for(int i = bl+1; i < br; i ++) {
addTag[i] += c;
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
a[i] += c;
}
Resort(bl);
for(int i = r; i > 0 && belong[i] == br; i --) {
a[i] += c;
}
Resort(br);
}
}
int Query(int l, int r, int c) {
int bl = belong[l], br = belong[r];
int ret = -1;
if(bl == br) {
for(int i = l; i <= r; i ++) {
if(a[i]+addTag[bl] < c) {
ret = max(ret, a[i]+addTag[bl]);
}
}
}
else {
for(int i = bl+1; i < br; i ++) {
int t = c-addTag[i];
auto iter = lower_bound(all(va[i]), t);
if(iter != va[i].begin()) {
// + addTag[i]
ret = max(ret, *(-- iter) + addTag[i]);
}
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
if(a[i]+addTag[bl] < c) {
ret = max(ret, a[i]+addTag[bl]);
}
}
for(int i = r; i > 0 && belong[i] == br; i --) {
if(a[i]+addTag[br] < c) {
ret = max(ret, a[i]+addTag[br]);
}
}
}
return ret;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize+1;
a.resize(n+1), va.resize(bNum+1), belong.resize(n+1), addTag.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize+1;
va[belong[i]].push_back(a[i]);
}
for(int i = 1; i <= bNum; i ++)
sort(all(va[i]));
for(int i = 0; i < n; i ++) {
int op, l, r, c;
cin >> op >> l >> r >> c;
if(op == 0) {
Add(l, r, c);
}
else {
cout << Query(l, r, c) << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("a2.in", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
做法2,multiset
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong, addTag;
vector<multiset<int>> va;
void Add(int l, int r, int c) {
int bl = belong[l], br = belong[r];
if(bl == br) {
for(int i = l; i <= r; i ++) {
va[bl].erase(va[bl].find(a[i]));
a[i] += c;
va[bl].insert(a[i]);
}
}
else {
for(int i = bl+1; i < br; i ++) {
addTag[i] += c;
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
va[bl].erase(va[bl].find(a[i]));
a[i] += c;
va[bl].insert(a[i]);
}
for(int i = r; i > 0 && belong[i] == br; i --) {
va[br].erase(va[br].find(a[i]));
a[i] += c;
va[br].insert(a[i]);
}
}
}
int Query(int l, int r, int c) {
int bl = belong[l], br = belong[r];
int ret = -1;
if(bl == br) {
for(int i = l; i <= r; i ++) {
if(a[i]+addTag[bl] < c) {
ret = max(ret, a[i]+addTag[bl]);
}
}
}
else {
for(int i = bl+1; i < br; i ++) {
int t = c-addTag[i];
auto iter = va[i].lower_bound(t);
if(iter != va[i].begin()) {
// + addTag[i]
ret = max(ret, *(-- iter) + addTag[i]);
}
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
if(a[i]+addTag[bl] < c) {
ret = max(ret, a[i]+addTag[bl]);
}
}
for(int i = r; i > 0 && belong[i] == br; i --) {
if(a[i]+addTag[br] < c) {
ret = max(ret, a[i]+addTag[br]);
}
}
}
return ret;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize+1;
a.resize(n+1), va.resize(bNum+1), belong.resize(n+1), addTag.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize+1;
va[(i-1)/bSize+1].insert(a[i]);
}
for(int i = 0; i < n; i ++) {
int op, l, r, c;
cin >> op >> l >> r >> c;
if(op == 0) {
Add(l, r, c);
}
else {
cout << Query(l, r, c) << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("a2.in", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
分块4
注意开long long
吧,我是直接过程转化了,看起来可能比较难看(逃
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong, addTag, sum;
void Add(int l, int r, int c) {
int bl = belong[l], br = belong[r];
if(bl == br) {
for(int i = l; i <= r; i ++) {
a[i] += c;
sum[bl] += c;
}
}
else {
for(int i = bl+1; i < br; i ++) {
addTag[i] += c;
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
a[i] += c;
sum[bl] += c;
}
for(int i = r; i > 0 && belong[i] == br; i --) {
a[i] += c;
sum[br] += c;
}
}
}
int Query(int l, int r, const int &MO) {
int bl = belong[l], br = belong[r];
int ret = 0;
if(bl == br) {
for(int i = l; i <= r; i ++) {
int x = (1LL*a[i] + addTag[bl]) % MO;
ret = (1LL*ret + x) % MO;
}
}
else {
for(int i = bl+1; i < br; i ++) {
int x = (1LL*sum[i] + 1LL*addTag[i]*bSize%MO) % MO;
ret = (1LL*ret + x) % MO;
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
int x = (1LL*a[i] + addTag[bl]) % MO;
ret = (1LL*ret + x) % MO;
}
for(int i = r; i > 0 && belong[i] == br; i --) {
int x = (1LL*a[i] + addTag[br]) % MO;
ret = (1LL*ret + x) % MO;
}
}
return ret;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize + 1;
a.resize(n+1), belong.resize(n+1), addTag.resize(bNum+1), sum.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize + 1;
sum[belong[i]] += a[i];
}
for(int i = 0; i < n; i ++) {
int op, l, r, c;
cin >> op >> l >> r >> c;
if(op == 0) {
Add(l, r, c);
}
else {
int MO = c+1;
cout << (Query(l, r, c+1)%MO+MO) % MO << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
分块5
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong, sum;
vector<bool> done;
void Modify(int l, int r) {
int bl = belong[l], br = belong[r];
if(bl == br) {
for(int i = l; i <= r; i ++) {
sum[bl] -= a[i];
a[i] = sqrt(a[i]);
sum[bl] += a[i];
}
}
else {
for(int i = bl+1; i < br; i ++) {
if(done[i]) continue;
done[i] = true;
// 和n要取较小的值,循环里面i和j不要想错了qwq
for(int j = (i-1)*bSize + 1; j <= min(i*bSize, n); j ++) {
sum[i] -= a[j];
a[j] = sqrt(a[j]);
sum[i] += a[j];
if(a[j] > 1) done[i] = false;
}
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
sum[bl] -= a[i];
a[i] = sqrt(a[i]);
sum[bl] += a[i];
}
for(int i = r; i > 0 && belong[i] == br; i --) {
sum[br] -= a[i];
a[i] = sqrt(a[i]);
sum[br] += a[i];
}
}
}
int Query(int l, int r) {
int bl = belong[l], br = belong[r];
int ret = 0;
if(bl == br) {
for(int i = l; i <= r; i ++) {
ret += a[i];
}
}
else {
for(int i = bl+1; i < br; i ++) {
ret += sum[i];
}
for(int i = l; i <= n && belong[i] == bl; i ++) {
ret += a[i];
}
for(int i = r; i > 0 && belong[i] == br; i --) {
ret += a[i];
}
}
return ret;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize + 1;
a.resize(n+1), belong.resize(n+1), done.resize(bNum+1), sum.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize + 1;
sum[belong[i]] += a[i];
}
for(int i = 0; i < n; i ++) {
int op, l, r, c;
cin >> op >> l >> r >> c;
if(op == 0) {
Modify(l, r);
}
else {
cout << Query(l, r) << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
分块6
因为是随机数据,重新分块(重构)的代码注释掉也是可以过的。
不重新分块625ms,hzwer学长提到的每$\sqrt{n}$次重构一次,是391ms,std里的看起来挺玄学的重构条件是196ms,分块真是玄学(逃
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong;
vector<vector<int>> va;
PII Find(int x) {
int ret = 1;
while(x > va[ret].size()) {
x -= va[ret].size();
ret ++;
}
return {ret, x-1};
}
void Rebuild() {
a.assign(1, 0);
for(int i = 1; i <= bNum; i ++) {
a.insert(a.end(), va[i].begin(), va[i].end());
va[i].clear();
}
n = a.size()-1;
bSize = sqrt(n), bNum = (n-1)/bSize + 1;
// 理论上只要更新bSize和va,但为了一致性,这里还是都更新了
belong.resize(n+1), va.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
belong[i] = (i-1)/bSize + 1;
va[belong[i]].push_back(a[i]);
}
}
void Insert(int x, int c) {
auto [i, b] = Find(x);
va[i].insert(va[i].begin() + b, c);
// if(va[i].size() > 20*bSize) {
// Rebuild();
// }
}
int Query(int x) {
auto [i, b] = Find(x);
return va[i][b];
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize + 1;
a.resize(n+1), belong.resize(n+1), va.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize + 1;
va[belong[i]].push_back(a[i]);
}
int t = sqrt(n);
// 由于n在重新分块时更新了,所以,这里循环询问的n要存到别的变量里面
int nn = n;
for(int i = 0; i < nn; i ++) {
int op, l, r, c;
cin >> op >> l >> r >> c;
if(op == 0) {
Insert(l, r);
// if(i % t == 0) {
// Rebuild();
// }
}
else {
cout << Query(r) << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
分块7
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int MO = 10007;
int n, bSize, bNum;
vector<int> a, belong, addTag, mulTag;
void Reset(int x) {
for(int i = (x-1)*bSize+1; i <= min(n, x*bSize); i ++)
a[i] = (1LL*a[i]*mulTag[x] % MO + addTag[x]) % MO;
mulTag[x] = 1, addTag[x] = 0;
}
void Modify(int op, int l, int r, int c) {
int bl = belong[l], br = belong[r];
if(bl == br) {
Reset(bl);
for(int i = l; i <= r; i ++) {
if(op == 0) {
a[i] = (1LL*a[i] + c) % MO;
}
else {
a[i] = 1LL*a[i]*c % MO;
}
}
}
else {
for(int i = bl+1; i < br; i ++) {
if(op == 0) {
addTag[i] = (1LL*addTag[i] + c) % MO;
}
else {
addTag[i] = 1LL*addTag[i] * c % MO;
mulTag[i] = 1LL*mulTag[i] * c % MO;
}
}
Reset(bl);
for(int i = l; i <= n && belong[i] == bl; i ++) {
if(op == 0) {
a[i] = (1LL*a[i] + c) % MO;
}
else {
a[i] = 1LL*a[i]*c % MO;
}
}
Reset(br);
for(int i = r; i > 0 && belong[i] == br; i --) {
if(op == 0) {
a[i] = (1LL*a[i] + c) % MO;
}
else {
a[i] = 1LL*a[i]*c % MO;
}
}
}
}
int Query(int x) {
int bx = belong[x];
return (1LL*a[x] * mulTag[bx] % MO + addTag[bx]) % MO;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize + 1;
a.resize(n+1), belong.resize(n+1), addTag.resize(bNum+1), mulTag.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize + 1;
}
for(int i = 1; i <= bNum; i ++) {
mulTag[i] = 1;
}
for(int i = 0; i < n; i ++) {
int op, l, r, c;
cin >> op >> l >> r >> c;
if(op == 2) {
cout << Query(r) << '\n';
}
else {
Modify(op, l, r, c);
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
分块8
需要去分析分块的时间复杂度,然后大胆分块暴力。
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong, tag;
void Reset(int x) {
if(tag[x] == -1) return;
for(int i = (x-1)*bSize + 1; i <= min(n, x*bSize); i ++) {
a[i] = tag[x];
}
tag[x] = -1;
}
int Query(int l, int r, int c) {
int bl = belong[l], br = belong[r], ret = 0;
if(bl == br) {
Reset(bl);
for(int i = l; i <= r; i ++) {
if(a[i] == c) {
ret ++;
}
else {
a[i] = c;
}
}
}
else {
for(int i = bl+1; i < br; i ++) {
if(tag[i] == c) {
ret += bSize;
}
else if(tag[i] == -1) {
// i和j分清楚。。
for(int j = (i-1)*bSize + 1; j <= min(n, i*bSize); j ++) {
if(a[j] == c) {
ret ++;
}
}
}
tag[i] = c;
}
Reset(bl);
for(int i = l; i <= n && belong[i] == bl; i ++) {
if(a[i] == c) {
ret ++;
}
else {
a[i] = c;
}
}
Reset(br);
for(int i = r; i > 0 && belong[i] == br; i --) {
if(a[i] == c) {
ret ++;
}
else {
a[i] = c;
}
}
}
return ret;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize + 1;
a.resize(n+1), belong.resize(n+1), tag.assign(bNum+1, -1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize + 1;
}
for(int i = 0; i < n; i ++) {
int l, r, c;
cin >> l >> r >> c;
cout << Query(l, r, c) << '\n';
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
分块9
好多做法,都不会(
做法1 - 分块 - 预处理块区间
很容易可以判断,[L, R]
的区间众数,一定是在[L, R]
中一段连续的整块的众数和两边非完整块的数的并集内。
然后,我们就可以处理f[i, j]
表示第 i 块到第 j 块区间的区间众数,不难发现,预处理的时间复杂度为$O(n \cdot 块数)$ ,是可以接受的,这实在是太神奇了!
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
int n, bSize, bNum;
vector<int> a, belong, cnt, val;
int nid;
map<int, int> mp;
vector<vector<int>> va, f;
void PrevCalc() {
for(int i = 1; i <= bNum; i ++) {
int mx = 0, res = 0;
cnt.assign(n+1, 0);
for(int j = (i-1)*bSize + 1; j <= n; j ++) {
int bj = belong[j];
cnt[a[j]] ++;
if(cnt[a[j]] > mx || cnt[a[j]] == mx && val[a[j]] < val[res])
mx = cnt[a[j]], res = a[j];
f[i][bj] = res;
}
}
}
int Query(int l, int r, int c) {
return (upper_bound(all(va[c]), r) - lower_bound(all(va[c]), l));
}
int Query(int l, int r) {
int bl = belong[l], br = belong[r], ret = 0, mx = 0;
if(bl == br) {
for(int i = l; i <= r; i ++) {
int t = Query(l, r, a[i]);
if(t > mx || t == mx && val[a[i]] < val[ret]) {
mx = t, ret = a[i];
}
}
}
else {
ret = f[bl+1][br-1], mx = Query(l, r, ret);
for(int i = l; i <= n && belong[i] == bl; i ++) {
int t = Query(l, r, a[i]);
if(t > mx || t == mx && val[a[i]] < val[ret]) {
mx = t, ret = a[i];
}
}
for(int i = r; i > 0 && belong[i] == br; i --) {
int t = Query(l, r, a[i]);
if(t > mx || t == mx && val[a[i]] < val[ret]) {
mx = t, ret = a[i];
}
}
}
return val[ret];
}
void solve() {
cin >> n;
bSize = sqrt(n/(log(n)/log(2.0))), bNum = (n-1)/bSize + 1;
a.resize(n+1), belong.resize(n+1), val.resize(n+1), va.resize(n+1), f.resize(bNum+1);
for(auto &v : f)
v.resize(bNum+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize + 1;
if(!mp.count(a[i])) {
mp[a[i]] = ++ nid;
val[nid] = a[i];
}
a[i] = mp[a[i]];
va[a[i]].push_back(i);
}
PrevCalc();
int ans = 0;
for(int i = 0; i < n; i ++) {
int l, r;
cin >> l >> r;
// l = (l+ans-1) % n + 1, r = (r+ans-1) % n + 1;;
if(l > r) swap(l, r);
ans = Query(l, r);
cout << ans << '\n';
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
做法2 - 普通莫队 + 值域分块
数列分块入门 #9 莫队做法 - 316.2277 - 洛谷博客 (luogu.com.cn)
如果只考虑众数出现的次数,直接普通莫队维护x出现的次数
和出现了x次的数有多少个
就可以解决。
但现在需要输出具体的最小的数,可以用(次数)值域分块来找,用普通莫队维护$f[i, j]$,表示在第 i 个值块中恰出现 j 次的值的个数(和参考博客参数顺序不同),关于为什么是个数的话,还是为了在维护这个信息时,更加方便,其实只是为了判断是否存在恰好为 j 次的。
普通莫队维护了信息,一次查询需要$O(\sqrt{n})$
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
struct Rec {
int l, r, qid;
};
int n, bSize, bNum, modecnt;
vector<int> a, belong, val, cnt, ccnt;
vector<vector<int>> f;
vector<Rec> query;
void add(int x) {
x = a[x];
int bx = belong[x], &c = cnt[x];
ccnt[c] --;
f[bx][c] --;
c ++;
if(modecnt < c) {
modecnt = c;
}
ccnt[c] ++;
f[bx][c] ++;
}
void del(int x) {
x = a[x];
int bx = belong[x], &c = cnt[x];
ccnt[c] --;
f[bx][c] --;
if(modecnt == c && ccnt[c] == 0) {
modecnt --;
}
c --;
ccnt[c] ++;
f[bx][c] ++;
}
int Query() {
for(int i = 1; i <= bNum; i ++) {
if(f[i][modecnt] > 0) {
for(int j = (i-1)*bSize + 1; j <= min(i*bSize, n); j ++) {
if(cnt[j] == modecnt) {
return val[j];
}
}
}
}
return -1;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize + 1;
a.resize(n+1), belong.resize(n+1), val.resize(n+1), cnt.resize(n+1);
ccnt.resize(n+1), query.resize(n), f.resize(bNum+1);
for(auto &v : f) v.resize(n+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize + 1;
val[i] = a[i];
}
sort(1+all(val));
val.resize(unique(1+all(val)) - val.begin());
for(int i = 1; i <= n; i ++) {
a[i] = lower_bound(1+all(val), a[i]) - val.begin();
}
for(int i = 0; i < n; i ++) {
auto &[l, r, qid] = query[i];
cin >> l >> r;
qid = i;
}
sort(all(query), [&](const Rec &a, const Rec &b) {
int abl = belong[a.l], bbl = belong[b.l];
if(abl != bbl) {
return abl < bbl;
}
else {
if(abl & 1) return a.r < b.r;
else return a.r > b.r;
}
});
vector<int> ans(n);
int l = 1, r = 0;
for(int i = 0; i < n; i ++) {
auto [ll, rr, qid] = query[i];
while(l > ll) add(-- l);
while(r < rr) add(++ r);
while(l < ll) del(l ++);
while(r > rr) del(r --);
ans[qid] = Query();
}
for(auto x : ans) {
cout << x << '\n';
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
做法3 - 回滚莫队
不删除莫队,状态/信息正常回滚,答案记录跳回。
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fi first
#define se second
#define mkp(x, y) make_pair((x), (y))
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
struct Rec {
int l, r, qid;
};
int n, bSize, bNum, modecnt, modecntB, res, resB;
vector<int> a, belong, val, cnt, tcnt;
vector<Rec> query;
int bf(int l, int r) {
int ret = 0, mx = 0;
tcnt.assign(n+1, 0);
for(int i = l; i <= r; i ++) { // tcnt
tcnt[a[i]] ++;
if(tcnt[a[i]] > mx || tcnt[a[i]] == mx && a[i] < ret) {
mx = tcnt[a[i]], ret = a[i];
}
}
return val[ret];
}
void add(int x) {
x = a[x];
cnt[x] ++;
if(cnt[x] > modecnt || cnt[x] == modecnt && x < res) {
modecnt = cnt[x], res = x;
}
}
void del(int x) {
x = a[x];
cnt[x] --;
}
void solve() {
cin >> n;
bSize = sqrt(n), bNum = (n-1)/bSize + 1;
a.resize(n+1), belong.resize(n+1), val.resize(n+1);
cnt.resize(n+1);
for(int i = 1; i <= n; i ++) {
cin >> a[i];
belong[i] = (i-1)/bSize + 1;
val[i] = a[i];
}
sort(1+all(val));
val.resize(unique(1+all(val)) - val.begin());
for(int i = 1; i <= n; i ++) {
a[i] = lower_bound(1+all(val), a[i]) - val.begin();
}
query.resize(n);
n = 0;
for(auto &[l, r, qid] : query) {
cin >> l >> r;
qid = n ++;
}
sort(all(query), [&](const Rec &a, const Rec &b) {
int abl = belong[a.l], bbl = belong[b.l];
return abl == bbl ? a.r < b.r : abl < bbl;
});
vector<int> ans(n);
for(int bid = 1, id = 0; bid <= bNum; bid ++) {
int tp = min(bid*bSize, n), l = tp+1, r = tp;
res = modecnt = 0;
cnt.assign(n+1, 0);
for( ; id < n && belong[query[id].l] == bid; id ++) {
auto [ll, rr, qid] = query[id];
int bll = belong[ll], brr = belong[rr];
if(bll == brr) {
ans[qid] = bf(ll, rr);
}
else {
while(r < rr) add(++ r);
modecntB = modecnt, resB = res;
while(l > ll) add(-- l);
ans[qid] = val[res];
while(l < tp+1) del(l ++);
modecnt = modecntB, res = resB;
}
}
}
for(auto x : ans) {
cout << x << '\n';
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed; // << setprecision(20); // double
// freopen("i.txt", "r", stdin);
// freopen("o.txt", "w", stdout);
// time_t t1 = clock();
int Tcase = 1;
// cin >> Tcase; // scanf("%d", &Tcase);
while (Tcase--)
solve();
// cout << "time: " << 1000.0 * ((clock() - t1) / CLOCKS_PER_SEC) << "ms\n";
return 0;
}
Comments | NOTHING
该文章已经关闭评论